

"Toward Proactive Response against Cyber-Attacks based on global monitoring and analysis: PRACTICE project (Research Part)"

Koji NAKAO

Information Security Fellow, KDDI Research Executive Director, Distinguished Researcher, NICT Telecom-ISAC Japan, Vice-Chairman

PRACTICE Project

Proactive Response Against Cyber-attacks Through International Collaborative Exchange

Botnets: Core of problems...

Goal: Toward Proactive Response against Cyber-Attacks

- Project is organized by MIC and is consisted of R&D part and Field Trial part.
- R&D part: Gaining maximum awareness of ongoing cyber attacks (botnets)
 I) Macroscopic tracking of botnet attacks using various types of distributed sensors (victim-side monitoring) for grasping Global Trends
- 2) Microscopic tracking of individual bot-infected hosts using malware sandboxes (attacker-side monitoring) → Deep Insights
- 3) Based on correlation analysis among the above two approaches, Investigation of symptoms of cyber-attacks will be carried out for sharing among partners including international partners.
- Field Trial part: Establishing quick and proactive response scheme with

ISPs' cooperation through a field trial by utilizing input from R&D part.

Who operates PRACTICE?

- MIC organizes the PRACTICE, which has Implementing Organizations and Supporting Organization.
- <u>Implementing Organizations</u> are ISP association(i.e. Telecom ISAC Japan) and related companies as a "field trial" part, and research institutes or security related companies as an "R&D" part.
- <u>Supporting Organization</u> is NICT which supports and assists "R&D" part of Implementing Organizations with technical expertise for cyber-attacks analysis technology.

What types of data to be shared through PRACTICE

Basic data to be shared with our collaborative partner's country:

as 1) Cyber attack information captured in Japan by LEU located in Japan (/20 network)

UDP TCP SYN TCP SYN/ACK TCP Other ICMP

Information is visualized by means of the tool developed by NICT. Using this information, cyber-attack behaviors (mainly SCANs) to Japan can be observed. Each country could interestingly compare the trend of attacks with your own country (see below 2)).

GE 2) Cyber attack information captured in our partner's country

Cyber-Attack Information targeted to your own country is visualized by means of the tool developed by NICT based on the captured data from darknet space in your country.

3) DAEDALUS data is provided (supported by NICT, Japan)

Bot

US&C

An organization (Use Case) : 14,000 addresses for livenet and 2,500 addresses for darknet Attacks by means of five continued alerts (with yellow) and one new alert (with red) were observed at 18:00 on July 10, 2012 in real-time basis. It is also possible to detect DDoS attack targeted to the livenet addresses just registered previously from your country.

• Results of Analysis can also be shared with our collaborative partner's country:

4) Attack similarity and specificity

Based on several analysis engines, your country can grasp similar attack behaviors observed by many sensors located all over the world. This information can be shared among our all collaborative partners. Therefore, your country should be aware of this similar propagation of attack for your proactive response. On the other hand, attack behavior specificity in your country can be reported. In this case, your country will be required to take a special measure against specific attack only observed in your country (only shared with your country).

5) Symptoms of attack behavior \rightarrow Today's topic

Based on various analysis methods, you will get symptoms of cyber-attack which will be very early stage of attack behavior. For example, "a new type of scan is getting observed in a synchronized manner among several sensors" will be informed.

📐 🧌 💽 🚞 🗌

e

💿 A 般 🐸 🥔 🕐 🖙 🖗 🧟

100%) 🕞 🔺

2

16:25

2013/09/25

System Overview

System Overview

Botnet Recognition from DNS traffic

Bot-infected hosts create various DNS traffic

Trials of microscopic botnet tracing

We executed different types of bot samples for several days \sim weeks in Internet-connected sandboxes.

Bobax.worm.gen / W32.Spybot.Worm	W32/Sality.gen / W32.Spybot.Worm
3b7eb30a8309d9ec39ce22f07c958f15	Ff0aae1480ab4975829996d17af3314b
W32/Virut.gen.a / Virut.W	W32/Virut.gen / Backdoor.Trojan
017f3b27048857ffd08495fb6d58da4e	e2c01dd431b22364483629f0ac4c5a18
Exploit-Mydoom / W32.Gobot.A	/ Trojan.Smoaler
4681d09d953a3952208b9e55aefccffb	a0d25e76c01de3be961343e4389182f8
PWS-Zbot.gen.aac / Trojan Horse	FakeAlert-SecurityTool.gf / W32.Waledac.C!gen2
65dc0682604e08c4bb2201ea67204181	a64037fcb070da113694fa6972f8573e
W32/Pift / W32.Morto.B	W32/Bobax.worm.gen /
0475c97ddb96252febff864fb778b460	fbf26c7e7040abc53fa1e161268414cf
Generic BackDoor.u / Backdoor.Makadocs	W32/Sdbot.worm / W32.IRCBot.Gen
546fa31bb7a4164ca25c8667d4352338	Fbacdd87c0dd445d0235261e41ce9928
W32/Pate.b / W32.Pinfi	W32/Sdbot.worm.gen.z / Suspicious.IRCBot
a6345baeb3ca0270ebdbae9a70f6ddbd	fa8c73b67bc9d320d3c2c56870f3149d
W32/Bobax.worm.gen / W32.Bobax!dr	McAfee / Symantec
02921989f9c6ebd7436993dc2bf5b852	Md

Characteristic DNS behaviors

I. Periodic Queries

2. Spam Related Queries

3. DGA (Domain Generation Algorithm) Queries

I. Periodic DNS Queries by Several Bots

Classic bots makes periodic DNS queries (Rather easy to detect at cache DNS)

Zbot		
Domains	Interval	
	mins hou	irs
mail.loaadss.pl.	79.6	1.3
mx.loaadss.pl.	77.4	1.3
smtp.loaadss.pl.	75.4	1.3
pop.loaadss.pl.	76.9	1.3
mx2.finansgroups.com.	133.6	2.2
mx3.finansgroups.com.	132.1	2.2
mx4.finansgroups.com.	133.6	2.2
mx5.finansgroups.com.	133.6	2.2
in1.smtp.messagingengine.com.	569.8	9.5
alt4.gmail-smtp-in.1.google.com.	17.5	0.3
gmail-smtp-in.1.google.com.	3.4	0.1
mail7.digitalwaves.co.nz.	5.1	0.1
mxs.mail.ru.	52.8	0.9

<u>Virut</u>

Domains	Interval mins
mxs.mail.ru	18.4
alt4.gmail-smtp-in.l.google.com.	7.4
gmail-smtp-in.1.google.com.	4.0

<u>Gobot</u>

Domains	Interval
	mins
fucko.servebeer.com.	1.9
fucko1.servebeer.com.	1.8
fucko2.servebeer.com.	1.8

Zbot Detected at Real Cache DNS Server

2012/06/XX XX:51:00

_ 0 <u>×</u>

16:34

2013/09/25

X

🔞 A 般 🥞 🥔 🕐 сарь 🛱

0

100%) 📿

e

đ

6

Virut.g Detected at Real Cache DNS Svr

Elapsed Time [min]

2. Spam Related Queries (Direct Spam)

Average DNS Queries per Hour

	Spybot ⋿ ಱ¤ঽ∞ಕ⊄	Zbot ⋿₩₽4ऌ+ਟ	Virut ⋿₩₽₳₽±⊄	Gobot ≡ ₩₽#??+⊄	Morto ⋿₩₽₳⊅+с
	<u>——</u> 97.⊥	ا تحويج	≁लर ।	天明天王	
_ Total	14406	32	5218	6 5	10
MX	7268	0	2072	0	0
Failure	932	0.36	1177	0	0.68

2. Spam Related Queries (Direct Spam)

Half of the queries are for MX records and the other half are for A records

2. Spam Related Queries (Via Relay)

There are some periods with low-frequency queries

3. DGA Queries

- Spybot and Virut contained Domain Generation Algorithm (DGA) to generate domains internally to connect their C&C servers.
- Many DGA domains point to same IP address.
- These DGA generated domains created many domain resolution failures (NX Domain, etc)

Average DNS Queries per Hour

[8] Manos Antonakakis, Roberto Perdisci, Yacin Nadji, Nikolaos Vasiloglou, Saeed Abu-Nimeh, Wenke Lee and David Dagon "From Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based Malware" Usenix 2012, 21st, p.491-506 2012-08-10

e

16:35

2013/09/25

×

100%

G

🔞 A 般 🐸 🥔 🕐 🛤 🗸

Escaping from Detection at Local Cache DNS server

Morto DNS queries

Open DNS used by Morto

154.70.1	141.192.60
154.70.22	67.220.123
154.71.1	67.220.220
154.71.22	67.222.123
180.96.54	67.222.222
95.1.1	166.160.36
95.192.1	141.112.163
211.253.2	196.3.183
2.0.20	220.163.82
175.39.39	199.54.9
153.192.1	250.36.130
153.194.1	.1
138.103.100	.2
138.96.2	9.140.194
146.237.237	44.127.16
236.43.5	8.200.200
248.252.2	.4
171.2.65	.8
171.3.65	91.109.10
210.42.205	85.53.4

Queries	query type	domain name	
1	А	wpad.	
47	А	d.ppiftns.in.	
16	А	ppift.vb.cn8u.cn.	
6	А	www.google.com.	
27	ТХТ	e.ppiftns.in.	
162	ТХТ	fd1.ppiplg.com.	
247	ТХТ	e.ppift.com.	
68	ТХТ	e.ppift.net.	
18	ТХТ	fd2.ppiplg.com.	
29	TXT	e.ppift.in.	

Number of Morto-Infected Hosts Detected at Open DNS in Jan 2013

DNS sensors + Other sensors

Darknet

Scans and back scatters

- (Server/Client)Honeypot Remote exploits
 - Drive-by-download
- Real traffic from backbone NW DDoS (Syn flood, DNS Amp, L7-DDoS)
 P2P-based Botnet (Zero Access, etc)

DNS sensors + Darknet sensors

- Morto is known to randomly access remote hosts on port 3389/tcp (thus detectable on darknet)
- We matched infected hosts from DNS data with ones accessing darknet on 3389/tcp

<June, 2012> 4-day darknet: 60,153 hosts I-hour DNS: 23,518 hosts Matched hosts: 16202 hosts (68.8%)

<March, 2012> I-day darknet: 20,065 hosts 4-hour DNS: 63,921 hosts Matched hosts: 13,653 hosts (68.0%) • Darknet

Scans and back scatters

- (Server/Client)Honeypot
 Remote exploits
 Drive-by-download
- Real traffic from backbone NW
 DDoS (Syn flood, DNS Amp, L7-DDoS)

P2P-based Botnet (Zero Access, etc)

Zero Access: Huge P2P botnet

- Zero Access is a P2P botnet known to consist of a few millions of infected hosts over world
- Exchange commands, infected IP lists, and plug-in files through its own P2P network (thus, undetectable by darknet nor DNS)
- Reported to make 140M ad-clicks/day, earn up to \$1M/day (From Kindsight's report at RSA Conference 2013)

Monitoring P2P communication(16471/tcp, 16471/udp) of Zero Access in Sandbox

Total # of hosts suspected to be infected

Geographic locations of regular nodes

Geographic locations of super nodes

Sandbox Monitoring + Backbone traffic

Matched with backbone traffic on 2013/4/23

Ports	# hosts(src+dst))	
(src port 16470 or dst port 16470) and proto udp	29590	
(src port 16471 or dst port 16471) and proto udp	56244	
(src port 16468 or dst port 16468) and proto udp	1720	
(src port 16472 or dst port 16472) and proto udp	849	
(src port 16469 or dst port 16469) and proto udp	688	
(src port 16473 or dst port 16473) and proto udp	656	
(src port 16467 or dst port 16467) and proto udp	605	
(src port 8080 or dst port 8080) and proto udp	13805	
(src port 80 or dst port 80) and proto udp	17516	
(src port 53 or dst port 53) and proto udp	822318	
(src port 1935 or dst port 1935) and proto udp	722	
(src port 6667 or dst port 6667) and proto udp	1153	

Observed Pay-Per-Click(80/tcp) from single ZeroAccessinfected host in sandbox

Total number of PPC targets

Heavily clicked web sites (> 4000 pkts/day)

Heavily Clicked Web Site (20130530-20130708)

1.22.33	Korea	om
1.22.34	Korea	om
4.153.107	United States	
.165.122	Ukraine	
.165.121	Ukraine	
4.153.110	United States	
30.106	United States	
42.226	United States	rse.softlayer.com
0.124.21	Hong Kong	
.55.13	United States	om
9.145.163	-	
.45.163	United States	
8.241.155	United Kingdom	
.55.12	United States	om
39.76	United States	c.akamaitechnologies.com
.216.55	United States	
.30.200	United States	tnoc.net
.237.229	United States	

We are now matching with DNS queries for these sites.

Monitoring/analysis of ZeroAccess Plug-ins

- The attacker can update Zero Access functionality by sending <u>plug-ins (DLL)</u> through P2P NW.
- We plan to detect the circulation of new plug-in and analyze its functionality for finding new attack vectors.

• Darknet

Scans and back scatters

Remote exploits

Drive-by-download

 Real traffic from backbone NW DDoS (Syn flood, DNS Amp, L7-DDoS)
 P2P-based Botnet (Zero Access, etc)

DNS Amplification Attack and DNS honeypot

- DDoS Attacks that misuse open DNS servers
- Bots send IP-spoofed queries to open DNS servers so that the spoofed host (DoS Target) receives amplified DNS responses
- We setup (open but bandwidth-controlled) DNS servers to monitor DNS AMP attacks

Attacks Observed by DNS Honeypots

	honeypot I (26 I days)	honeypot2 (5Idays)
Total Queries	1,667,085	3,411,687
Source IPs of queries	1,129	565
Domains	1,136	80

Frequently queried domains

Honeypotl

Honeypot2

Queries	Domain	Туре	Queries	Domain	Туре
1,110,870	isc.org	ANY	2,209,146	isc.org	ANY
405,441	ripe.net	ANY	899,334	ripe.net	ANY
32,196	www.2sf999.com	ANY	382,190	www.58wgw.com	ANY
31,330	8845.582878.com	ANY	31,553	www.2sf999.com	ANY
28,298	www.ntdtv.com	ANY	31,187	8845.582878.com	ANY

Gains of Amplification (Observed on 2013/6/17)

Domain	Query size	Response Size ^{%1}	Gain ^{%2}
isc.org (ANY)	78byte	3,497byte	4483.3%
ripe.net (ANY)	79byte	2,882byte	3648.1%

- XI Maximum response size
- ※2 Gain = Response size/Query size × 100 [%]

Honeypot vs backbone monitoring

We compare DoS alerts by honeypots and backbone monitoring (June 2013).

I	DOS S (H	34 of 81 aler	rts by honey	nots match	ו with
	201				i vvicii
	201	hackhone ale	orte		
	201	Dackbone ale			
	2013				
	2013			4 F •	
	201	Honeypots of	letect DoS	4.5 mins or	ו
	201	71			
	201	average earli	er than bac	khone mor	itoring
	201	aver age carn			
	2013				
	201				
	201	some alerts	are remarк	adıy earlier	
	201		N . I	· · · · ·	
	2013	(10mins \sim 1r	iour) than c	letected at	
	201	X	/		
	201	hackhone			
	2013	backbone.			
	201				
	2013				
	201				
	2013	Early alerts of	on watched	ips /domai	ns
	2013				
	201	(e.ggov) ma	ay be dossib	ole but false	alerts
	201	(
	201	need to be c	oncerned		
	2013				
	2013/6/30 2:57	2013/6/30 3:01	178.33.194.25	2013/6/30 2:59	2013/6/30 3:
	2013/6/30 5:03	2013/6/30 5:13	178.33.194.25	2013/6/30 5:04	2013/6/30 5:
	2013/6/30 6:52	2013/6/30 9:05	184.82.163.4	2013/6/30 7:51	2013/6/30 7:
	2013/6/30 11:08	2013/6/30 11:31	89.47.182.207	2013/6/30 11:13	2013/6/30 11:
	2013/6/30 9:16	2013/6/30 9:44	17.172.170.68	2013/6/30 9:18	2013/6/30 9:

.: دام	Start Time Difference	End Time Difference (Mins)
/ITN	(i iiii3) 2	
	-2	-1
	-	-
	-10	2
		7
	-2	4
	-1	2
•	-2	I
oring.	-7	1
0	-3	6
	-2	-11
	-2	-1
	-1 -2	-13
	-2	-
	-2	0
	-1	0
	-1	-1
	-2	0
	-2	6
	-3	0
	-2	-
	-3	3
	-6	0
erts	-1	-30
	-12	-
		0
	-1	0
2013/6/30 3:02	-2	-1
2013/6/30 5:12	-	1
2013/6/30 7:51	-59	74
2013/6/30 11:31		0
2013/6/30 9:44	-2	0

Summary

- Our awareness on ongoing botnet activities has <u>improved</u> with following approaches:
- Long-term sandbox analysis of bot samples reveals their microscopic behavior (e.g. characteristic DNS queries) for detecting infected hosts as well as understanding the details of threats (e.g. Spam, PPC).
- Multiple sensors (cache DNS, darknet, livenet, and honeypots) are complementary to each other enabling us to grasp macroscopic picture of various botnet activities.

Sum of Approaches for Early Detection of Cyber Attacks

- Close monitoring of existing botnets
 - Increase of infected hosts
 - Change of functionality
 - Automated monitoring and analysis of Zero Access Plug-ins
- Early Warning of DDoS (DNS Amplification)
 - Trial using DNS Honeypots
- Early Warning of Worm Pandemic (Not explained today)
 Case study of Conficker and Morto cases

Thank you for listening Q&A

